Instrumental Variable Quantile Estimation of Spatial Autoregressive Models

We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is al...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: YANG, Zhenlin
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2007
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/soe_research/1038
https://ink.library.smu.edu.sg/context/soe_research/article/2037/viewcontent/ivqr_sar20110505.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id sg-smu-ink.soe_research-2037
record_format dspace
spelling sg-smu-ink.soe_research-20372018-06-01T04:29:36Z Instrumental Variable Quantile Estimation of Spatial Autoregressive Models YANG, Zhenlin We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is also robust against outliers and requires weaker moment conditions. More importantly, it allows us to characterize the heterogeneous impact of variables on different points (quantiles) of a response distribution. We derive the limiting distribution of the new estimator. Simulation results show that the new estimator performs well in finite samples at various quantile points. In the special case of median restriction, it outperforms the conventional QML estimator without taking into account of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without considering the heteroscedasticity. 2007-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/1038 https://ink.library.smu.edu.sg/context/soe_research/article/2037/viewcontent/ivqr_sar20110505.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Spatial Autoregressive Model; Quantile Regression; Instrumental Variable; QuasiMaximum Likelihood; GMM; Robustness Econometrics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Spatial Autoregressive Model; Quantile Regression; Instrumental Variable; QuasiMaximum Likelihood; GMM; Robustness
Econometrics
spellingShingle Spatial Autoregressive Model; Quantile Regression; Instrumental Variable; QuasiMaximum Likelihood; GMM; Robustness
Econometrics
YANG, Zhenlin
Instrumental Variable Quantile Estimation of Spatial Autoregressive Models
description We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is also robust against outliers and requires weaker moment conditions. More importantly, it allows us to characterize the heterogeneous impact of variables on different points (quantiles) of a response distribution. We derive the limiting distribution of the new estimator. Simulation results show that the new estimator performs well in finite samples at various quantile points. In the special case of median restriction, it outperforms the conventional QML estimator without taking into account of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without considering the heteroscedasticity.
format text
author YANG, Zhenlin
author_facet YANG, Zhenlin
author_sort YANG, Zhenlin
title Instrumental Variable Quantile Estimation of Spatial Autoregressive Models
title_short Instrumental Variable Quantile Estimation of Spatial Autoregressive Models
title_full Instrumental Variable Quantile Estimation of Spatial Autoregressive Models
title_fullStr Instrumental Variable Quantile Estimation of Spatial Autoregressive Models
title_full_unstemmed Instrumental Variable Quantile Estimation of Spatial Autoregressive Models
title_sort instrumental variable quantile estimation of spatial autoregressive models
publisher Institutional Knowledge at Singapore Management University
publishDate 2007
url https://ink.library.smu.edu.sg/soe_research/1038
https://ink.library.smu.edu.sg/context/soe_research/article/2037/viewcontent/ivqr_sar20110505.pdf
_version_ 1770569380632985600