Instrumental Variable Quantile Estimation of Spatial Autoregressive Models

We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is al...

全面介紹

Saved in:
書目詳細資料
主要作者: YANG, Zhenlin
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2007
主題:
在線閱讀:https://ink.library.smu.edu.sg/soe_research/1038
https://ink.library.smu.edu.sg/context/soe_research/article/2037/viewcontent/ivqr_sar20110505.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:We propose an instrumental variable quantile regression (IVQR) estimator for spatial autoregressive (SAR) models. Like the GMM estimators of Lin and Lee (2006) and Kelejian and Prucha (2006), the IVQR estimator is robust against heteroscedasticity. Unlike the GMM estimators, the IVQR estimator is also robust against outliers and requires weaker moment conditions. More importantly, it allows us to characterize the heterogeneous impact of variables on different points (quantiles) of a response distribution. We derive the limiting distribution of the new estimator. Simulation results show that the new estimator performs well in finite samples at various quantile points. In the special case of median restriction, it outperforms the conventional QML estimator without taking into account of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without considering the heteroscedasticity.