A Poisson-Based Distribution Learning Framework for Short-Term Prediction of Food Delivery Demand Ranges
The COVID-19 pandemic has caused a dramatic change in the demand composition of restaurants and, at the same time, catalyzed on-demand food delivery (OFD) services—such as DoorDash, Grubhub, and Uber Eats—to a large extent. With massive amounts of data on customers, drivers, and merchants, OFD platf...
محفوظ في:
المؤلفون الرئيسيون: | LIANG, Jian, KE, Jintao, WANG, Hai, YE, Hongbo, TANG, Jinjun |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8459 https://ink.library.smu.edu.sg/context/sis_research/article/9462/viewcontent/Poisson_Based_DLF_2023_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Uncovering merchants’ willingness to wait in on-demand food delivery markets
بواسطة: LIANG, Jian, وآخرون
منشور في: (2024) -
Uncovering merchants' willingness to wait in on-demand food delivery markets
بواسطة: LIANG, Jian, وآخرون
منشور في: (2024) -
Quantifying consumers' cost-value trade-offs on on-demand food delivery services: value-of-time framework and partitioned pricing
بواسطة: Ma, Bohao, وآخرون
منشور في: (2024) -
Decorating 3D models with Poisson vector graphics
بواسطة: Liu, Yongjin, وآخرون
منشور في: (2019) -
Empirical Likelihood for Compound Poisson Processes
بواسطة: Li, Z., وآخرون
منشور في: (2014)