A Poisson-Based Distribution Learning Framework for Short-Term Prediction of Food Delivery Demand Ranges
The COVID-19 pandemic has caused a dramatic change in the demand composition of restaurants and, at the same time, catalyzed on-demand food delivery (OFD) services—such as DoorDash, Grubhub, and Uber Eats—to a large extent. With massive amounts of data on customers, drivers, and merchants, OFD platf...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8459 https://ink.library.smu.edu.sg/context/sis_research/article/9462/viewcontent/Poisson_Based_DLF_2023_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
الملخص: | The COVID-19 pandemic has caused a dramatic change in the demand composition of restaurants and, at the same time, catalyzed on-demand food delivery (OFD) services—such as DoorDash, Grubhub, and Uber Eats—to a large extent. With massive amounts of data on customers, drivers, and merchants, OFD platforms can achieve higher efficiency with better strategic and operational decisions; these include dynamic pricing, order bundling and dispatching, and driver relocation. Some of these decisions, and especially proactive decisions in real time, rely on accurate and reliable short-term predictions of demand ranges or distributions. In this paper, we develop a Poisson-based distribution prediction (PDP) framework equipped with a double-hurdle mechanism to forecast the range and distribution of potential customer demand. Specifically, a multi-objective function is designed to learn the likelihood of zero demand and approximate true demand and label distribution. An uncertainty-based multi-task learning technique is further employed to dynamically assign weights to different objective functions. The proposed model, evaluated by numerical experiments based on a real-world dataset collected from an OFD platform in Singapore, is shown to outperform several benchmarks by achieving more reliable demand range forecasting. |
---|