Weighted covariance matrix estimation
The paper proposes a cross-validated linear shrinkage estimation for population covariance matrices. Moreover we also propose a novel weighted estimator based on the thresholding and shrinkage methods for high dimensional datasets. It is applicable to a wider scope of different structures of covaria...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/144459 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | The paper proposes a cross-validated linear shrinkage estimation for population covariance matrices. Moreover we also propose a novel weighted estimator based on the thresholding and shrinkage methods for high dimensional datasets. It is applicable to a wider scope of different structures of covariance matrices. Some theoretical results about the cross-validated shrinkage method and weighted covariance estimation methods are also developed. The finite-sample performance of the proposed methods is illustrated through extensive simulations and real data analysis. |
---|