Context models for pedestrian intention prediction by factored latent-dynamic conditional random fields
Smooth handling of pedestrian interactions is a key requirement for Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS). Such systems call for early and accurate prediction of a pedestrian's crossing/not-crossing behaviour in front of the vehicle. Existing approaches to pedes...
Saved in:
主要作者: | Satyajit Neogi |
---|---|
其他作者: | Justin Dauwels |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/143222 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Context-aware pedestrian motion prediction
由: Haddad, Sirin
出版: (2021) -
Pedestrian motion prediction using deep generative networks
由: Ong, Xing Long
出版: (2019) -
Deep learning based pedestrian prediction for mobile robot navigation
由: Chen, Weipeng
出版: (2019) -
Comfort zone prediction around commuter for personal mobility device : pedestrian
由: Murugesan, Jeyakaran
出版: (2019) -
Prediction of pedestrian trajectory with a moving camera using deep learning
由: Xiong, Xincheng
出版: (2020)