Block-Based K-Medoids Partitioning Method with Standardized Data to Improve Clustering Accuracy

Most of the existing k-medoid algorithms select the initial medoid randomly or use a specific formula based on the proximity matrix. This study proposes a block-based k- medoids partitioning method for clustering objects. To get the initial medoids, we search for an object representative from the b...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kariyam, Kariyam, Abdurakhman, Abdurakhman, Subanar, Subanar, Utami, Herni, Effendie, Adhitya Ronnie
格式: Article PeerReviewed
語言:English
出版: International Information and Engineering Technology Association (IIETA) 2022
主題:
在線閱讀:https://repository.ugm.ac.id/282735/1/Kariyam_PA.pdf
https://repository.ugm.ac.id/282735/
http://iieta.org/journals/mmep
https://doi.org/10.18280/mmep.090622
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!