ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION

In this thesis explain a method for estimating Value at Risk (VaR) and Expected Shortfall of heteroscedastic financial return time series. The method used is combination of GARCH models and Extreme Value Theory (EVT). The GARCH models used to estimate volatility and EVT for estimating the tail of di...

Full description

Saved in:
Bibliographic Details
Main Authors: , HERMANSAH, , Dr. Abdurakhman, M.Si.
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/118718/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=58692
Tags: Add Tag
No Tags, Be the first to tag this record!
id id-ugm-repo.118718
record_format dspace
spelling id-ugm-repo.1187182016-03-04T08:38:34Z https://repository.ugm.ac.id/118718/ ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION , HERMANSAH , Dr. Abdurakhman, M.Si., ETD In this thesis explain a method for estimating Value at Risk (VaR) and Expected Shortfall of heteroscedastic financial return time series. The method used is combination of GARCH models and Extreme Value Theory (EVT). The GARCH models used to estimate volatility and EVT for estimating the tail of distribution. The distribution used in EVT is Generalized Pareto Distribution (GPD). Furthermore the method used is a method estimation of conditional VaR and conditional Expected Shortfall. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , HERMANSAH and , Dr. Abdurakhman, M.Si., (2013) ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=58692
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, HERMANSAH
, Dr. Abdurakhman, M.Si.,
ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION
description In this thesis explain a method for estimating Value at Risk (VaR) and Expected Shortfall of heteroscedastic financial return time series. The method used is combination of GARCH models and Extreme Value Theory (EVT). The GARCH models used to estimate volatility and EVT for estimating the tail of distribution. The distribution used in EVT is Generalized Pareto Distribution (GPD). Furthermore the method used is a method estimation of conditional VaR and conditional Expected Shortfall.
format Theses and Dissertations
NonPeerReviewed
author , HERMANSAH
, Dr. Abdurakhman, M.Si.,
author_facet , HERMANSAH
, Dr. Abdurakhman, M.Si.,
author_sort , HERMANSAH
title ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION
title_short ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION
title_full ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION
title_fullStr ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION
title_full_unstemmed ESTIMASI VALUE AT RISK DAN EXPECTED SHORTFALL UNTUK HETEROSKEDASTIK RUNTUN WAKTU FINANSIAL DENGAN GENERALIZED PARETO DISTRIBUTION
title_sort estimasi value at risk dan expected shortfall untuk heteroskedastik runtun waktu finansial dengan generalized pareto distribution
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2013
url https://repository.ugm.ac.id/118718/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=58692
_version_ 1681231011894001664