การเดินแบบปิดของม้าบนกระดาน LB(m, n, 4, 3)
According to Srichote et. al’s research in 2020, they studied the existence of a closed knight’s tour (CKT) on LB(m, n, 4, 4) and the existence of some opened knight’s tours (OKTs) on LB(m, n, 3, 3) to construct a CKT on the ringboard that defined to be a CB(m, n) with the middle part missing and th...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Senior Project |
語言: | Thai |
出版: |
จุฬาลงกรณ์มหาวิทยาลัย
2022
|
在線閱讀: | https://digiverse.chula.ac.th/Info/item/dc:94641 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chulalongkorn University |
語言: | Thai |
總結: | According to Srichote et. al’s research in 2020, they studied the existence of a closed knight’s tour (CKT) on LB(m, n, 4, 4) and the existence of some opened knight’s tours (OKTs) on LB(m, n, 3, 3) to construct a CKT on the ringboard that defined to be a CB(m, n) with the middle part missing and the rim containing exactly r rows and r columns. In this project, we extend their idea to find conditions for the existence of CKTs on LB(m, n, 4, 3) and 7B(m, n, 4, 3) to construct a CKT on the ringboard with unequal thickness around all four sides of the ring. |
---|