การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3
Let a graph G = (V(G),E(G)) having (G)| = p and (G)| = q.Define an (a,d)-edge antimagic total labeling of a graph G to be a bijective function f mapping from ƒ mapping from V(G) u E(G) to {1,2,3, …, p+q} such that the set of weights all edges in G, {w(uv) = ƒ(u) + ƒ (uv) + ƒ(v) v ∈ (G)}, equals to t...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Senior Project |
اللغة: | Thai |
منشور في: |
จุฬาลงกรณ์มหาวิทยาลัย
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://digiverse.chula.ac.th/Info/item/dc:10646 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chulalongkorn University |
اللغة: | Thai |
id |
10646 |
---|---|
record_format |
dspace |
spelling |
106462024-02-20T11:50:35Z https://digiverse.chula.ac.th/Info/item/dc:10646 Senior Project ©คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 10.58837/CHULA.SP.2019.308 tha บุญณิตา สุวรรณชาตรี การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 Super (a,d)-edge antimagic total labeling of graphs C₃ Pn where n ≥2 and Cn P₂ where is odd such that n≥3 จุฬาลงกรณ์มหาวิทยาลัย 2019 2019 Let a graph G = (V(G),E(G)) having (G)| = p and (G)| = q.Define an (a,d)-edge antimagic total labeling of a graph G to be a bijective function f mapping from ƒ mapping from V(G) u E(G) to {1,2,3, …, p+q} such that the set of weights all edges in G, {w(uv) = ƒ(u) + ƒ (uv) + ƒ(v) v ∈ (G)}, equals to the set of arithmetic progression {a,a+d, a+2d, …, a + (q-1)d}, where a > 0 and d ≥ 0 are two integers. Furthermore, ƒ is called a super (a,d)-edge antimagic total labeling of G if ƒ (V(G)) = {1,2,3, …, p}. This project constructs total labelings for C₃ P{u1D45B} and C{u1D45B} P₂. Then, prove that it is a super (3n + 4, 2)-edge antimagic total labeling for C₃ P{u1D45B} where n≥2 and a super (equation)-edge antimagic total labeling for C{u1D45B} P₂ where n is an odd integer such that n ≥ 3. ให้กราฟ G=(V(G),E(G) มี (G)| = p และ (G)| = q นิยามการกำกับทั้งหมดอย่างปฏิมหัศจรรย์แบบ (a,d) บนเส้นเชื่อมของกราฟ G เป็นฟังก์ชัน f ที่ส่งจาก V(G) U E(G) ไปยัง {1,2,3, …,p+q} แบบสมนัยหนึ่งต่อหนึ่งซึ่งมีสมบัติว่า เซตของน้ำหนักเส้นเชี่อมทั้งหมดในกราฟ G ในรูป {w(uv) = f(u) + f(uv) + f(v) | uv E(G)} จะเท่ากับเซตของลำดับเลขคณิต {a,a + d,a + 2d, …,a + (q-1)d} เมื่อ a>0 และ d ≥ 0 เป็นจำนวนเต็ม นอกจากนี้ถ้า f(v(G)) = {1,2,3, …,p} แล้วจะเรียก f ว่าการกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ G โครงงานนี้สร้างการกำกับทั้งหมดบน C₃Pn และ CnP₂ แล้วพิสูจน์ว่าการกำกับทั้งหมดนี้เป็นการกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (3n + 4, 2) บนเส้นเชื่อมของ CP₂ เมื่อ n≥2 และเป็นการกำกับทั้งหมดนี้เป็นการกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (สูตรสมการ) บนเส้นเชื่อมของ CnP₂ เมื่อ n เป็นจำนวนเต็มคี่ที่ n ≥ 3 30 pages ทฤษฎีกราฟ สมการ Graph theory Equations รตินันท์ บุญเคลือบ https://digiverse.chula.ac.th/digital/file_upload/biblio/cover/10646.jpg |
institution |
Chulalongkorn University |
building |
Chulalongkorn University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Chulalongkorn University Library |
collection |
Chulalongkorn University Intellectual Repository |
language |
Thai |
topic |
ทฤษฎีกราฟ สมการ Graph theory Equations |
spellingShingle |
ทฤษฎีกราฟ สมการ Graph theory Equations บุญณิตา สุวรรณชาตรี การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
description |
Let a graph G = (V(G),E(G)) having (G)| = p and (G)| = q.Define an (a,d)-edge antimagic total labeling of a graph G to be a bijective function f mapping from ƒ mapping from V(G) u E(G) to {1,2,3, …, p+q} such that the set of weights all edges in G, {w(uv) = ƒ(u) + ƒ (uv) + ƒ(v) v ∈ (G)}, equals to the set of arithmetic progression {a,a+d, a+2d, …, a + (q-1)d}, where a > 0 and d ≥ 0 are two integers. Furthermore, ƒ is called a super (a,d)-edge antimagic total labeling of G if ƒ (V(G)) = {1,2,3, …, p}. This project constructs total labelings for C₃ P{u1D45B} and C{u1D45B} P₂. Then, prove that it is a super (3n + 4, 2)-edge antimagic total labeling for C₃ P{u1D45B} where n≥2 and a super (equation)-edge antimagic total labeling for C{u1D45B} P₂ where n is an odd integer such that n ≥ 3. |
author2 |
รตินันท์ บุญเคลือบ |
author_facet |
รตินันท์ บุญเคลือบ บุญณิตา สุวรรณชาตรี |
format |
Senior Project |
author |
บุญณิตา สุวรรณชาตรี |
author_sort |
บุญณิตา สุวรรณชาตรี |
title |
การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
title_short |
การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
title_full |
การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
title_fullStr |
การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
title_full_unstemmed |
การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
title_sort |
การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ c₃pnเมื่อ n ≥2 และ cn p₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3 |
publisher |
จุฬาลงกรณ์มหาวิทยาลัย |
publishDate |
2019 |
url |
https://digiverse.chula.ac.th/Info/item/dc:10646 |
_version_ |
1831168114497159168 |