การกำกับทั้งหมดอย่างปฏิมหัศจรรย์ยวดยิ่งแบบ (a,d) บนเส้นเชื่อมของกราฟ C₃Pnเมื่อ n ≥2 และ Cn P₂เมื่อ n เป็นจำนวนเต็มคี่ที่ n≥3
Let a graph G = (V(G),E(G)) having (G)| = p and (G)| = q.Define an (a,d)-edge antimagic total labeling of a graph G to be a bijective function f mapping from ƒ mapping from V(G) u E(G) to {1,2,3, …, p+q} such that the set of weights all edges in G, {w(uv) = ƒ(u) + ƒ (uv) + ƒ(v) v ∈ (G)}, equals to t...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Senior Project |
اللغة: | Thai |
منشور في: |
จุฬาลงกรณ์มหาวิทยาลัย
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://digiverse.chula.ac.th/Info/item/dc:10646 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chulalongkorn University |
اللغة: | Thai |
الملخص: | Let a graph G = (V(G),E(G)) having (G)| = p and (G)| = q.Define an (a,d)-edge antimagic total labeling of a graph G to be a bijective function f mapping from ƒ mapping from V(G) u E(G) to {1,2,3, …, p+q} such that the set of weights all edges in G, {w(uv) = ƒ(u) + ƒ (uv) + ƒ(v) v ∈ (G)}, equals to the set of arithmetic progression {a,a+d, a+2d, …, a + (q-1)d}, where a > 0 and d ≥ 0 are two integers. Furthermore, ƒ is called a super (a,d)-edge antimagic total labeling of G if ƒ (V(G)) = {1,2,3, …, p}. This project constructs total labelings for C₃ P{u1D45B} and C{u1D45B} P₂. Then, prove that it is a super (3n + 4, 2)-edge antimagic total labeling for C₃ P{u1D45B} where n≥2 and a super (equation)-edge antimagic total labeling for C{u1D45B} P₂ where n is an odd integer such that n ≥ 3. |
---|