Influence maximization on social graphs: A survey

Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technica...

全面介紹

Saved in:
書目詳細資料
Main Authors: LI, Yuchen, FAN, Ju, WANG, Yanhao, TAN, Kian-Lee
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2018
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/3981
https://ink.library.smu.edu.sg/context/sis_research/article/4983/viewcontent/08295265.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects (1) a review of well-accepted diffusion models that capture information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.