On Profiling Blogs with Representative Entries

With an explosive growth of blogs, information seeking in blogosphere becomes more and more challenging. One example task is to find the most relevant topical blogs against a given query or an existing blog. Such a task requires concise representation of blogs for effective and efficient searching a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: ZHUANG, Jinfeng, HOI, Steven C. H., SUN, Aixin
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2008
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/2405
https://ink.library.smu.edu.sg/context/sis_research/article/3405/viewcontent/p55_zhuang.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:With an explosive growth of blogs, information seeking in blogosphere becomes more and more challenging. One example task is to find the most relevant topical blogs against a given query or an existing blog. Such a task requires concise representation of blogs for effective and efficient searching and matching. In this paper, we investigate a new problem of profiling a blog by choosing a set of m most representative entries from the blog, where m is a predefined number that is application-dependent. With the set of selected representative entries, applications on blogs avoid handling hundreds or even thousands of entries (or posts) associated with each blog, which are updated frequently and often noisy in nature. To guide the process of selecting the most representative entries, we propose three principles, i.e., anomaly, representativeness, and diversity. Based on these principles, a greedy yet very efficient entry selection algorithm is proposed. To evaluate the entry selection algorithms, an extrinsic evaluation methodology from document summarization research is adapted. Specifically, we evaluate the proposed entry selection algorithms by examining their blog classification accuracies. By evaluating on a number of different classification methods, our empirical results showed that comparable classification accuracy could be achieved by using fewer than 20 representative entries for each blog compared to that of engaging all entries.