Explanation guided contrastive learning for sequential recommendation
Recently, contrastive learning has been applied to the sequential recommendation task to address data sparsity caused by users with few item interactions and items with few user adoptions. Nevertheless, the existing contrastive learning-based methods fail to ensure that the positive (or negative) se...
محفوظ في:
المؤلفون الرئيسيون: | WANG, Lei, LIM, Ee-peng, LIU, Zhiwei, ZHAO, Tianxiang |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/lkcsb_research/7084 https://ink.library.smu.edu.sg/context/lkcsb_research/article/8083/viewcontent/2209.01347.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Sequential recommendation: From representation learning to reasoning
بواسطة: WANG, Lei
منشور في: (2024) -
Mining product textual data for recommendation explanations
بواسطة: LE TRUNG HOANG,
منشور في: (2022) -
Improving knowledge-aware recommendation with multi-level interactive contrastive learning
بواسطة: ZOU, Ding, وآخرون
منشور في: (2022) -
Tagcloud-based explanation with feedback for recommender systems
بواسطة: Chen, W., وآخرون
منشور في: (2014) -
Multi-view hypergraph contrastive policy learning for conversational recommendation
بواسطة: ZHAO, Sen, وآخرون
منشور في: (2023)