Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution

This paper develops a semi-analytic model for periodically structured composites, of which each period contains an arbitrary distribution of particles/fibers or inhomogeneities in a three-dimensional space. The inhomogeneities can be of arbitrary shape and have multiple phases. The model is develope...

全面介紹

Saved in:
書目詳細資料
主要作者: Zhou, Kun
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2013
在線閱讀:https://hdl.handle.net/10356/98292
http://hdl.handle.net/10220/12353
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This paper develops a semi-analytic model for periodically structured composites, of which each period contains an arbitrary distribution of particles/fibers or inhomogeneities in a three-dimensional space. The inhomogeneities can be of arbitrary shape and have multiple phases. The model is developed using the Equivalent Inclusion Method in conjunction with a fast Fourier Transform algorithm and the Conjugate Gradient Method. The interactions among inhomogeneities within one computational period are fully taken into account. An accurate knowledge of the stress field of the composite is obtained by setting the computational period to contain one or more structural periods of the composite. The effective moduli of the composite are calculated from average stresses and elastic strains. The model is used to analyze the stress field and effective moduli of anisotropic composites that have cubic symmetry. It shows that the bulk and shear moduli predicted by the present model are well located within the Hashin-Shtrikman bounds. The study also shows that the stress field of the composite can be significantly affected by the distribution of inhomogeneities even though the effective moduli are not affected much.