Tracy-Widom law for the extreme eigenvalues of sample correlation matrices

Let the sample correlation matrix be W = YYT, where Y = (yij)p,n with yij = xij /√∑xij2. We assume {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ n} to be a collection of independent symmetrically distributed random variables with sub-exponential tails. Moreover, for any i, we assume xij, 1 ≤ j ≤ n to be identically dis...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Bao, Zhigang, Pan, Guangming, Zhou, Wang
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2013
الوصول للمادة أونلاين:https://hdl.handle.net/10356/96096
http://hdl.handle.net/10220/10085
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Let the sample correlation matrix be W = YYT, where Y = (yij)p,n with yij = xij /√∑xij2. We assume {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ n} to be a collection of independent symmetrically distributed random variables with sub-exponential tails. Moreover, for any i, we assume xij, 1 ≤ j ≤ n to be identically distributed. We assume 0 < p < n and p/n→y with some y ∈ (0,1) as p,n → ∞. In this paper, we provide the Tracy-Widom law (TW1) for both the largest and smallest eigenvalues of W. If xij are i.i.d. standard normal, we can derive the TW1 for both the largest and smallest eigenvalues of the matrix R = RRT, where R = (rij)p,n with rij = (xij − xi )/√∑(xij −xi)2, xi = n−1∑xij.