Tracy-Widom law for the extreme eigenvalues of sample correlation matrices
Let the sample correlation matrix be W = YYT, where Y = (yij)p,n with yij = xij /√∑xij2. We assume {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ n} to be a collection of independent symmetrically distributed random variables with sub-exponential tails. Moreover, for any i, we assume xij, 1 ≤ j ≤ n to be identically dis...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/96096 http://hdl.handle.net/10220/10085 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Let the sample correlation matrix be W = YYT, where Y = (yij)p,n with yij = xij /√∑xij2. We assume {xij : 1 ≤ i ≤ p, 1 ≤ j ≤ n} to be a collection of independent symmetrically distributed random variables with sub-exponential tails. Moreover, for any i, we assume xij, 1 ≤ j ≤ n to be identically distributed. We assume 0 < p < n and p/n→y with some y ∈ (0,1) as p,n → ∞. In this paper, we provide the Tracy-Widom law (TW1) for both the largest and smallest eigenvalues of W. If xij are i.i.d. standard normal, we can derive the TW1 for both the largest and smallest eigenvalues of the matrix R = RRT, where R = (rij)p,n with rij = (xij − xi )/√∑(xij −xi)2, xi = n−1∑xij. |
---|