Surface morphology, phase structure and property evolution of anodized titanium during water vapor exposure

The effects of water vapor exposure on surface characteristics of anodized titanium were investigated. The anodized titanium was prepared in 1 M phosphoric acid solution at 170 V. The as-prepared TiO2 layer consisted of amorphous oxides and exhibited a porous microstructure with many craters on the...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chen, Zhaoxiang, Zhou, Kun
其他作者: School of Materials Science & Engineering
格式: Article
語言:English
出版: 2016
主題:
在線閱讀:https://hdl.handle.net/10356/81826
http://hdl.handle.net/10220/40983
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:The effects of water vapor exposure on surface characteristics of anodized titanium were investigated. The anodized titanium was prepared in 1 M phosphoric acid solution at 170 V. The as-prepared TiO2 layer consisted of amorphous oxides and exhibited a porous microstructure with many craters on the surface. Exposure to water vapor at 160 °C caused the TiO2 layer to undergo significant surface morphology evolution and phase transition. Specifically, after the initial exposure, many oxide microspheres emerged on the surface of anodized titanium. Then, these microspheres grew continuously at the expense of amorphous oxides and coalesced with one another. The X-ray diffraction and Raman spectroscopy analyses indicated that the exposure transformed amorphous oxides into crystalline anatase. The surface property investigation of anodized titanium showed that the adhesion strength of anodic TiO2 layer decreased significantly after the exposure.