Non linear PCA and the benefits over linear PCA

The increasingly complex world revolves around data with often high dimensionality. To combat this issue, Principal Component Analysis (PCA) aims to reduce the dimension of the problem to sieve out the most important combinations of random variables which account for the highest variance of the prob...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Chuah, Justin Kok Jin
مؤلفون آخرون: Pan Guangming
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2025
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/184477
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
id sg-ntu-dr.10356-184477
record_format dspace
spelling sg-ntu-dr.10356-1844772025-05-05T15:37:33Z Non linear PCA and the benefits over linear PCA Chuah, Justin Kok Jin Pan Guangming School of Physical and Mathematical Sciences GMPAN@ntu.edu.sg Mathematical Sciences The increasingly complex world revolves around data with often high dimensionality. To combat this issue, Principal Component Analysis (PCA) aims to reduce the dimension of the problem to sieve out the most important combinations of random variables which account for the highest variance of the problem. However, traditional PCA is too demanding and restrictive and thus arises the need for a more robust form of PCA, termed Non-Linear PCA (NLPCA). This study will focus on one form of Non-Linear PCA, known as Kernel PCA, and examine how effective it is in analyzing and conducting statistical inference on different sets of data in comparison to solely traditional PCA. Bachelor's degree 2025-04-30T04:56:48Z 2025-04-30T04:56:48Z 2025 Final Year Project (FYP) Chuah, J. K. J. (2025). Non linear PCA and the benefits over linear PCA. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/184477 https://hdl.handle.net/10356/184477 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Mathematical Sciences
spellingShingle Mathematical Sciences
Chuah, Justin Kok Jin
Non linear PCA and the benefits over linear PCA
description The increasingly complex world revolves around data with often high dimensionality. To combat this issue, Principal Component Analysis (PCA) aims to reduce the dimension of the problem to sieve out the most important combinations of random variables which account for the highest variance of the problem. However, traditional PCA is too demanding and restrictive and thus arises the need for a more robust form of PCA, termed Non-Linear PCA (NLPCA). This study will focus on one form of Non-Linear PCA, known as Kernel PCA, and examine how effective it is in analyzing and conducting statistical inference on different sets of data in comparison to solely traditional PCA.
author2 Pan Guangming
author_facet Pan Guangming
Chuah, Justin Kok Jin
format Final Year Project
author Chuah, Justin Kok Jin
author_sort Chuah, Justin Kok Jin
title Non linear PCA and the benefits over linear PCA
title_short Non linear PCA and the benefits over linear PCA
title_full Non linear PCA and the benefits over linear PCA
title_fullStr Non linear PCA and the benefits over linear PCA
title_full_unstemmed Non linear PCA and the benefits over linear PCA
title_sort non linear pca and the benefits over linear pca
publisher Nanyang Technological University
publishDate 2025
url https://hdl.handle.net/10356/184477
_version_ 1833072361029500928