Deep learning-powered vessel traffic flow prediction with spatial-temporal attributes and similarity grouping
Perceiving the future trend of Vessel Traffic Flow (VTF) in advance has great application values in the maritime industry. However, using such big data from the Automatic Identification System (AIS) for accurate VTF prediction remains challenging. Deep training networks can learn valuable features f...
Saved in:
Main Authors: | Li, Yan, Liang, Maohan, Li, Huanhuan, Yang, Zaili, Du, Liang, Chen, Zhongshuo |
---|---|
其他作者: | School of Civil and Environmental Engineering |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/174055 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Tensor decomposition for spatial-temporal traffic flow prediction with sparse data
由: Yang, Funing, et al.
出版: (2021) -
Graph attention informer for long-term traffic flow prediction under the impact of sports events
由: Song, Yaofeng, et al.
出版: (2024) -
Short-term freeway traffic flow prediction: Bayesian combined neural network approach
由: Zheng, W., et al.
出版: (2014) -
Simultaneously identifying all true vessels from segmented retinal images
由: Lau, Q.P., et al.
出版: (2014) -
Benchmarking feed-forward randomized neural networks for vessel trajectory prediction
由: Cheng, Ruke, et al.
出版: (2024)