Multi-agent deep reinforcement learning based distributed control architecture for interconnected multi-energy microgrid energy management and optimization
Environmental and climate change concerns are pushing the rapid development of new energy resources (DERs). The Energy Internet (EI), with the power-sharing functionality introduced by energy routers (ERs), offers an appealing alternative for DER systems. However, previous centralized control scheme...
محفوظ في:
المؤلفون الرئيسيون: | Zhang, Bin, Hu, Weihao, Ghias, Amer M. Y. M., Xu, Xiao, Chen, Zhe |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/172264 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Novel data-driven decentralized coordination model for electric vehicle aggregator and energy hub entities in multi-energy system using an improved multi-agent DRL approach
بواسطة: Zhang, Bin, وآخرون
منشور في: (2023) -
A double-deck deep reinforcement learning-based energy dispatch strategy for an integrated electricity and district heating system embedded with thermal inertial and operational flexibility
بواسطة: Zhang, Bin, وآخرون
منشور في: (2023) -
Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system
بواسطة: Logenthiran, T., وآخرون
منشور في: (2014) -
A distributed control scheme of microgrids in energy internet paradigm and its multisite implementation
بواسطة: Wang, Yu, وآخرون
منشور في: (2022) -
Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes
بواسطة: Li, Zhengmao, وآخرون
منشور في: (2020)