Bayesian neural network generalised additive models

In recent years, neural networks (NNs) have gained wide and lasting traction as the machine learning architecture of choice in many contexts, due to its flexibility and ability to represent complex functions. However, in the context of a regression task, NNs face difficulties in interpretability and...

全面介紹

Saved in:
書目詳細資料
主要作者: Tay, Caleb Wei Hua
其他作者: Xiang Liming
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/172098
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In recent years, neural networks (NNs) have gained wide and lasting traction as the machine learning architecture of choice in many contexts, due to its flexibility and ability to represent complex functions. However, in the context of a regression task, NNs face difficulties in interpretability and understanding of the effects of each predictor, due to the interactions between each predictor. Additive models, which are simpler models than NNs and lack interaction terms, allow insight into the effects of individual predictors, at the potential cost of model accuracy. More generally, machine learning models may also be ‘overconfident’ in their predictions; in that the model is unable to specify its confidence it is in its prediction. Taking a Bayesian viewpoint allows for machine learning models to represent its confidence (or lack thereof) in its predictions. This paper aims to collect these ideas together to form a new machine learning architecture that is interpretable and Bayesian in nature.