Remote sensing applications of machine learning processes: satellite imagery road extraction using few shot segmentation
Road extraction from aerial images is a fundamental task in the field of remote sensing. Much of the deep learning models for road extraction rely on convolutional neural networks (CNNs) and their derivative architectures. CNNs are able to capture higher-level representations in the images’ raw pixe...
Saved in:
主要作者: | Ong, Grace Hui Lee |
---|---|
其他作者: | Long Cheng |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/168247 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Object detection from satellite imagery
由: Fan, Sui
出版: (2020) -
Development of an advanced nano-satellite (VELOX-I) - remote sensing camera system
由: Xing, YiHuan.
出版: (2013) -
Object detection from satellite imagery
由: Seah, Yi Xuan
出版: (2020) -
Graph-based model on limited dataset: land cover semantic segmentation in remote sensing image analysis
由: Seah, Lyndon
出版: (2023) -
(RS)2 I - Retrieval system for remotely sensed imagery on-board image processing for the NTU Satellite X-Sat
由: Bretschneider, Timo Rolf.
出版: (2008)