Housing price prediction using sequence transformers

The objective of this project is to create a forecast of Singapore’s housing prices using a dataset that includes prices of Housing and Development Board (HDB) flats over 5-10 years. The machine learning technique used in this research will be Sequence Transformers which is often used in Natural Lan...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Muhammad Aidil Goh Jalil
مؤلفون آخرون: Soh Yeng Chai
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/157538
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The objective of this project is to create a forecast of Singapore’s housing prices using a dataset that includes prices of Housing and Development Board (HDB) flats over 5-10 years. The machine learning technique used in this research will be Sequence Transformers which is often used in Natural Language Processing (NLP). The paper applies the multi-layer attention layer, which improves processing time by parallelizing input data. The Transformer model allows for a bigger dataset to be used as compared to Recurrent Neural Network (RNN) tools such as Long-Short Term Memory (LSTM). Therefore, this project aims to test the feasibility of using Sequence Transformers by validating the output with loss functions by comparing training loss to validation loss.