The skyline of counterfactual explanations for machine learning decision models
Counterfactual explanations are minimum changes of a given input to alter the original prediction by a machine learning model, usually from an undesirable prediction to a desirable one. Previous works frame this problem as a constrained cost minimization, where the cost is defined as L1/L2 distance...
Saved in:
Main Authors: | Wang, Yongjie, Ding, Qinxu, Wang, Ke, Liu, Yue, Wu, Xingyu, Wang, Jinglong, Liu, Yong, Miao, Chunyan |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156946 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Counterfactual explanations on the changes in foreign exchange market
由: Sng, Rhys Yi
出版: (2024) -
Counterfactual explanations for forex prediction using deep learning methods
由: Vinod, Vinay Krishnaa
出版: (2024) -
Counterfactual Thoughts in Photography
由: Reinhuber, Elke
出版: (2017) -
Counterfactual explanations for machine learning models on heterogeneous data
由: Wang, Yongjie
出版: (2023) -
When counterfactual thinking meets the technology acceptance model: An investigation
由: Tan, C.-H., et al.
出版: (2013)