Reversible photochromism in ⟨110⟩ oriented layered halide perovskite

Extending halide perovskites' optoelectronic properties to stimuli-responsive chromism enables switchable optoelectronics, information display, and smart window applications. Here, we demonstrate a band gap tunability (chromism) via crystal structure transformation from three-dimensional FAPbBr...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kanwat, Anil, Ghosh, Biplab, Ng, Si En, Rana, Prem Jyoti Singh, Lekina, Yulia, Hooper, Thomas J. N., Yantara, Natalia, Kovalev, Mikhail, Chaudhary, Bhumika, Kajal, Priyanka, Febriansyah, Benny, Tan, Qi Ying, Klein, Maciej, Shen, Ze Xiang, Ager, Joel W., Mhaisalkar, Subodh Gautam, Mathews, Nripan
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/154975
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Extending halide perovskites' optoelectronic properties to stimuli-responsive chromism enables switchable optoelectronics, information display, and smart window applications. Here, we demonstrate a band gap tunability (chromism) via crystal structure transformation from three-dimensional FAPbBr3 to a ⟨110⟩ oriented FAn+2PbnBr3n+2 structure using a mono-halide/cation composition (FA/Pb) tuning. Furthermore, we illustrate reversible photochromism in halide perovskite by modulating the intermediate n phase in the FAn+2PbnBr3n+2 structure, enabling greater control of the optical band gap and luminescence of a ⟨110⟩ oriented mono-halide/cation perovskite. Proton transfer reaction-mass spectroscopy carried out to precisely quantify the decomposition product reveals that the organic solvent in the film is a key contributor to the structural transformation and, therefore, the chromism in the ⟨110⟩ structure. These intermediate n phases (2 ≤ n ≤ ∞) stabilize in metastable states in the FAn+2PbnBr3n+2 system, which is accessible via strain or optical or thermal input. The structure reversibility in the ⟨110⟩ perovskite allowed us to demonstrate a class of photochromic sensors capable of self-adaptation to lighting.