Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks

Shallow feed-forward networks are incapable of addressing complex tasks such as natural language processing that require learning of temporal signals. To address these requirements, we need deep neuromorphic architectures with recurrent connections such as deep recurrent neural networks. However, th...

全面介紹

Saved in:
書目詳細資料
Main Authors: John, Rohit Abraham, Acharya, Jyotibdha, Zhu, Chao, Surendran, Abhijith, Bose, Sumon Kumar, Chaturvedi, Apoorva, Tiwari, Nidhi, Gao, Yang, He, Yongmin, Zhang, Keke K., Xu, Manzhang, Leong, Wei Lin, Liu, Zheng, Basu, Arindam, Mathews, Nripan
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/152915
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English