Assessing mothers' postpartum depression from their infants' cry vocalizations

Postpartum Depression (PPD), a condition that affects up to 15% of mothers in high-income countries, reduces attention to the needs of the child and is among the first causes of infanticide. PPD is usually identified using self-report measures and therefore it is possible that mothers are unwilling...

全面介紹

Saved in:
書目詳細資料
Main Authors: Gabrieli, Giulio, Bornstein, Marc H., Manian, Nanmathi, Esposito, Gianluca
其他作者: School of Social Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/143242
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Postpartum Depression (PPD), a condition that affects up to 15% of mothers in high-income countries, reduces attention to the needs of the child and is among the first causes of infanticide. PPD is usually identified using self-report measures and therefore it is possible that mothers are unwilling to report PPD because of a social desirability bias. Previous studies have highlighted the presence of significant differences in the acoustical properties of the vocalizations of infants of depressed and healthy mothers, suggesting that the mothers' behavior can induce changes in infants' vocalizations. In this study, cry episodes of infants (N = 56, 157.4 days ± 8.5, 62% firstborn) of depressed (N = 29) and non-depressed (N = 27) mothers (mean age = 31.1 years ± 3.9) are analyzed to investigate the possibility that a cloud-based machine learning model can identify PPD in mothers from the acoustical properties of their infants' vocalizations. Acoustic features (fundamental frequency, first four formants, and intensity) are first extracted from recordings of crying infants, then cloud-based artificial intelligence models are employed to identify maternal depression versus non-depression from estimated features. The trained model shows that commonly adopted acoustical features can be successfully used to identify postpartum depressed mothers with high accuracy (89.5%).