Interdependent ranking of sources and sinks in CCS systems using the analytic network process

CO2 capture and storage (CCS) is widely regarded as an important low-carbon technology for reducing greenhouse gas emissions from large industrial point sources. It entails the capture of a relatively pure CO2 from exhaust gases using different techniques, and then storing this captured gas in vario...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Promentilla, Michael Angelo B., Tapia, John Frederick D., Arcilla, C. A., Dugos, Nathaniel P., Gaspillo, Pag Asa D., Roces, Susan A., Tan, Raymond Girard R.
التنسيق: text
منشور في: Animo Repository 2013
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/faculty_research/1681
https://animorepository.dlsu.edu.ph/context/faculty_research/article/2680/type/native/viewcontent
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: De La Salle University
الوصف
الملخص:CO2 capture and storage (CCS) is widely regarded as an important low-carbon technology for reducing greenhouse gas emissions from large industrial point sources. It entails the capture of a relatively pure CO2 from exhaust gases using different techniques, and then storing this captured gas in various geological sinks. Large-scale deployment of CCS requires the comprehensive evaluation of candidate sources and sinks present in a given geographical region. In this study, we propose an analytic network process (ANP) approach to rank simultaneously the potential CO2 sources and sinks in a CCS system. Such ranking can be used to identify sites for CCS demonstration projects. This ANP decision model allows us to incorporate the feedback dependency that exist in the preference ranking of sources and sinks due to the importance of geographic proximity as a decision criterion. A case study is then solved to demonstrate the proposed model. © 2013 Elsevier Ltd.