PENERAPAN MODEL ARIMA-NEURAL NETWORK HYBRID UNTUK PERAMALAN TIME SERIES
ARIMA Model and Neural Network are methods that was usually used for forcasting time series data. Both of them have the differences, where ARIMA model better used to predict of linear time series data, while Neural Network better used to predict of nonlinear time series data. But in real-world time...
Saved in:
Main Authors: | , ENSIWI MUNARSIH, , Prof. Drs. H. Subanar, Ph.D |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2011
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/97379/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=52820 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
Similar Items
-
Neural network dan model Arima untuk peramalan data finansial
by: , WAHYUNI, Rika, et al.
Published: (2005) -
WAVELET NEURAL NETWORKS UNTUK PERAMALAN DATA TIME SERIES FINANSIAL
by: , Subanar
Published: (2009) -
Algoritma levenberg marquardt untuk training feedforward neural network pada peramalan data time series
by: , HENDIKAWATI, Putriaji, et al.
Published: (2010) -
GENERAL REGRESSION NEURAL NETWORK (GRNN) PADA
PERAMALAN DATA TIME SERIES
by: , Luh Putu Widya Adnyani, et al.
Published: (2012) -
MODEL HYBRID JARINGAN SYARAF BACKPROPAGATION DAN
REGRESI FUZZY UNTUK PERAMALAN DATA TIME SERIES
by: , Winna leon Agusta, et al.
Published: (2013)