Diagnosis Gangguan Permulaan Transformation Dengan JaringanSyaraf Learning Vector Quantization
The objective of this research is to find the optimum learning vector quantization (LVQ) neural network for power transformer incipient faults diagnosis based on dissolved gas in oil analysis (DGA). The research has been conducted by designing LVQ neural network topologies based on DGA. The topologi...
Saved in:
Main Author: | Perpustakaan UGM, i-lib |
---|---|
Format: | Article NonPeerReviewed |
Published: |
[Yogyakarta] : Program Studi S1 Gizi Kesehatan Fak. Kedokteran UGM
2006
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/20667/ http://i-lib.ugm.ac.id/jurnal/download.php?dataId=3522 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Aplikasi jaringan syaraf tiruan untuk diagnosis gangguan permulaan transformator daya
by: , SETIAWAN, Noor Akhmad, et al.
Published: (2003) -
Analisis Tentang Permulaan Tatanan
by: Perpustakaan UGM, i-lib
Published: (2004) -
Estimasi Evapotranspirasi Potensial Menggunakan Jaringan Syaraf Tiruan
by: Perpustakaan UGM, i-lib
Published: (2004) -
Analisis komponen utama citra aras-keabuan dengan jaringan syaraf tiruan
by: Perpustakaan UGM, i-lib
Published: (2001) -
Identifikasi Keluaran Sistem Sensor Penciuman Terhadap Aroma Kopi Dengan Jaringan Syaraf Tiruan
by: Perpustakaan UGM, i-lib
Published: (1998)