REGRESI NONPARAMETRIK KERNEL ADJUSTED
Nadaraya watson�s kernel adjusted regression estimator is an estimator that whose kernel is taken from the family of scale-location associated with the classical kernel density estimator. Based on these estimator, it can be obtained optimal bandwith and scale parameter. This estimator gives a bett...
Saved in:
Main Authors: | , |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2014
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/133812/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74649 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
id-ugm-repo.133812 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.1338122016-03-04T08:04:02Z https://repository.ugm.ac.id/133812/ REGRESI NONPARAMETRIK KERNEL ADJUSTED , NOVITA EKA CHANDRA , Prof. Dr. Sri Haryatmi, M.Sc. ETD Nadaraya watson�s kernel adjusted regression estimator is an estimator that whose kernel is taken from the family of scale-location associated with the classical kernel density estimator. Based on these estimator, it can be obtained optimal bandwith and scale parameter. This estimator gives a better estimation results compared with Naradaya Watson�s clasical kernel regression estimator. This is proven by the small grade MSE which is given by this estimator. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , NOVITA EKA CHANDRA and , Prof. Dr. Sri Haryatmi, M.Sc. (2014) REGRESI NONPARAMETRIK KERNEL ADJUSTED. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74649 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
country |
Indonesia |
collection |
Repository Civitas UGM |
topic |
ETD |
spellingShingle |
ETD , NOVITA EKA CHANDRA , Prof. Dr. Sri Haryatmi, M.Sc. REGRESI NONPARAMETRIK KERNEL ADJUSTED |
description |
Nadaraya watson�s kernel adjusted regression estimator is an estimator that
whose kernel is taken from the family of scale-location associated with the classical
kernel density estimator. Based on these estimator, it can be obtained optimal bandwith
and scale parameter. This estimator gives a better estimation results compared
with Naradaya Watson�s clasical kernel regression estimator. This is proven by the
small grade MSE which is given by this estimator. |
format |
Theses and Dissertations NonPeerReviewed |
author |
, NOVITA EKA CHANDRA , Prof. Dr. Sri Haryatmi, M.Sc. |
author_facet |
, NOVITA EKA CHANDRA , Prof. Dr. Sri Haryatmi, M.Sc. |
author_sort |
, NOVITA EKA CHANDRA |
title |
REGRESI NONPARAMETRIK KERNEL ADJUSTED |
title_short |
REGRESI NONPARAMETRIK KERNEL ADJUSTED |
title_full |
REGRESI NONPARAMETRIK KERNEL ADJUSTED |
title_fullStr |
REGRESI NONPARAMETRIK KERNEL ADJUSTED |
title_full_unstemmed |
REGRESI NONPARAMETRIK KERNEL ADJUSTED |
title_sort |
regresi nonparametrik kernel adjusted |
publisher |
[Yogyakarta] : Universitas Gadjah Mada |
publishDate |
2014 |
url |
https://repository.ugm.ac.id/133812/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74649 |
_version_ |
1681233750939140096 |