REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION
Regression analysis is a statistical tool that is widely used to determine the relationship between a pair of variables or more. If the formulation relationship between the predictor variablesX and Y the response variable is not known,estimation of the regression function m(:) can use a nonparametri...
Saved in:
Main Authors: | , |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2014
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/133714/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74501 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
id |
id-ugm-repo.133714 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.1337142016-03-04T08:08:29Z https://repository.ugm.ac.id/133714/ REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION , RATNA YUNIARTI , Prof. Dr. Sri Haryatmi, M.Sc. ETD Regression analysis is a statistical tool that is widely used to determine the relationship between a pair of variables or more. If the formulation relationship between the predictor variablesX and Y the response variable is not known,estimation of the regression function m(:) can use a nonparametric approach. In nonprametric regression approach, generally just assumed regression function contained in a function space of infinite dimension. One approach, known in the nonparametric regression is the kernel regression. Nadaraya-Watson regression estimator is a kernel that can be used to estimating the regression function m(:). However, when the data are outliers estimators Nadaraya-Watson produces a large MSE. The influence of such outliers is causing large residuals of the model is formed, and the variance the data becomes larger. Therefore, we need a method to cope with outliers. One method that can overcome the outliers is a robust method. Huber introduced estimator-M, the idea that a robust estimator against outliers. In addition, also required a method to estimate the error prediction error a model, it is cross-validation method. Cross validation is a methods that can be used to obtain the best regression curve models. Cross-validation can estimate the prediction error of a model and also compare existing models and then selected models which has a lower prediction error. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , RATNA YUNIARTI and , Prof. Dr. Sri Haryatmi, M.Sc. (2014) REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74501 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
country |
Indonesia |
collection |
Repository Civitas UGM |
topic |
ETD |
spellingShingle |
ETD , RATNA YUNIARTI , Prof. Dr. Sri Haryatmi, M.Sc. REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION |
description |
Regression analysis is a statistical tool that is widely used to determine the
relationship between a pair of variables or more. If the formulation relationship between
the predictor variablesX and Y the response variable is not known,estimation
of the regression function m(:) can use a nonparametric approach. In nonprametric
regression approach, generally just assumed regression function contained in a
function space of infinite dimension. One approach, known in the nonparametric
regression is the kernel regression. Nadaraya-Watson regression estimator is a kernel
that can be used to estimating the regression function m(:). However, when the
data are outliers estimators Nadaraya-Watson produces a large MSE. The influence
of such outliers is causing large residuals of the model is formed, and the variance
the data becomes larger. Therefore, we need a method to cope with outliers.
One method that can overcome the outliers is a robust method. Huber introduced
estimator-M, the idea that a robust estimator against outliers. In addition, also required
a method to estimate the error prediction error a model, it is cross-validation
method. Cross validation is a methods that can be used to obtain the best regression
curve models. Cross-validation can estimate the prediction error of a model and
also compare existing models and then selected models which has a lower prediction
error. |
format |
Theses and Dissertations NonPeerReviewed |
author |
, RATNA YUNIARTI , Prof. Dr. Sri Haryatmi, M.Sc. |
author_facet |
, RATNA YUNIARTI , Prof. Dr. Sri Haryatmi, M.Sc. |
author_sort |
, RATNA YUNIARTI |
title |
REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION |
title_short |
REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION |
title_full |
REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION |
title_fullStr |
REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION |
title_full_unstemmed |
REGRESI NONPARAMETRIK DENGAN MENGGUNAKAN METODE ROBUST CROSS-VALIDATION |
title_sort |
regresi nonparametrik dengan menggunakan metode robust cross-validation |
publisher |
[Yogyakarta] : Universitas Gadjah Mada |
publishDate |
2014 |
url |
https://repository.ugm.ac.id/133714/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74501 |
_version_ |
1681233733298946048 |