PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN

A clustering method for time series is introduced, based on probability density of the forecast. First, autoregressive bootstrap procedure combined with nonparametric kernel estimator is applied to data to obtain estimation of the forecast densities. The estimated forecast densities are the used to...

Full description

Saved in:
Bibliographic Details
Main Authors: , ORIEZA FEBRIANDHANI, , Prof. Drs. Subanar, Ph.D
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/132288/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72814
Tags: Add Tag
No Tags, Be the first to tag this record!
id id-ugm-repo.132288
record_format dspace
spelling id-ugm-repo.1322882016-03-04T08:05:55Z https://repository.ugm.ac.id/132288/ PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN , ORIEZA FEBRIANDHANI , Prof. Drs. Subanar, Ph.D ETD A clustering method for time series is introduced, based on probability density of the forecast. First, autoregressive bootstrap procedure combined with nonparametric kernel estimator is applied to data to obtain estimation of the forecast densities. The estimated forecast densities are the used to construct the dissimilarity matrix and hence to perform clustering. Finally, application of this method in real dataset are discussed. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , ORIEZA FEBRIANDHANI and , Prof. Drs. Subanar, Ph.D (2014) PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72814
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, ORIEZA FEBRIANDHANI
, Prof. Drs. Subanar, Ph.D
PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
description A clustering method for time series is introduced, based on probability density of the forecast. First, autoregressive bootstrap procedure combined with nonparametric kernel estimator is applied to data to obtain estimation of the forecast densities. The estimated forecast densities are the used to construct the dissimilarity matrix and hence to perform clustering. Finally, application of this method in real dataset are discussed.
format Theses and Dissertations
NonPeerReviewed
author , ORIEZA FEBRIANDHANI
, Prof. Drs. Subanar, Ph.D
author_facet , ORIEZA FEBRIANDHANI
, Prof. Drs. Subanar, Ph.D
author_sort , ORIEZA FEBRIANDHANI
title PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
title_short PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
title_full PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
title_fullStr PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
title_full_unstemmed PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
title_sort pengklasteran data runtun waktu berbasis densitas peramalan
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2014
url https://repository.ugm.ac.id/132288/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72814
_version_ 1681233475787554816