PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN
A clustering method for time series is introduced, based on probability density of the forecast. First, autoregressive bootstrap procedure combined with nonparametric kernel estimator is applied to data to obtain estimation of the forecast densities. The estimated forecast densities are the used to...
Saved in:
Main Authors: | , |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2014
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/132288/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72814 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
id-ugm-repo.132288 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.1322882016-03-04T08:05:55Z https://repository.ugm.ac.id/132288/ PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN , ORIEZA FEBRIANDHANI , Prof. Drs. Subanar, Ph.D ETD A clustering method for time series is introduced, based on probability density of the forecast. First, autoregressive bootstrap procedure combined with nonparametric kernel estimator is applied to data to obtain estimation of the forecast densities. The estimated forecast densities are the used to construct the dissimilarity matrix and hence to perform clustering. Finally, application of this method in real dataset are discussed. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , ORIEZA FEBRIANDHANI and , Prof. Drs. Subanar, Ph.D (2014) PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72814 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
country |
Indonesia |
collection |
Repository Civitas UGM |
topic |
ETD |
spellingShingle |
ETD , ORIEZA FEBRIANDHANI , Prof. Drs. Subanar, Ph.D PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN |
description |
A clustering method for time series is introduced, based on probability
density of the forecast. First, autoregressive bootstrap procedure combined with
nonparametric kernel estimator is applied to data to obtain estimation of the
forecast densities. The estimated forecast densities are the used to construct the
dissimilarity matrix and hence to perform clustering. Finally, application of this
method in real dataset are discussed. |
format |
Theses and Dissertations NonPeerReviewed |
author |
, ORIEZA FEBRIANDHANI , Prof. Drs. Subanar, Ph.D |
author_facet |
, ORIEZA FEBRIANDHANI , Prof. Drs. Subanar, Ph.D |
author_sort |
, ORIEZA FEBRIANDHANI |
title |
PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN |
title_short |
PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN |
title_full |
PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN |
title_fullStr |
PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN |
title_full_unstemmed |
PENGKLASTERAN DATA RUNTUN WAKTU BERBASIS DENSITAS PERAMALAN |
title_sort |
pengklasteran data runtun waktu berbasis densitas peramalan |
publisher |
[Yogyakarta] : Universitas Gadjah Mada |
publishDate |
2014 |
url |
https://repository.ugm.ac.id/132288/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72814 |
_version_ |
1681233475787554816 |