PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION

The rise of social media analysis is currently providing a new requirement. We are required to conclude an opinion or argument in a document such as the enormous social media data as quickly and efficiently. Opinion obtained from us may infer a hidden key information and can be used for further anal...

Full description

Saved in:
Bibliographic Details
Main Authors: , RUSKE ILLA KENGKEN, , Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc.
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/131387/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=71845
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.131387
record_format dspace
spelling id-ugm-repo.1313872016-03-04T08:10:54Z https://repository.ugm.ac.id/131387/ PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION , RUSKE ILLA KENGKEN , Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc. ETD The rise of social media analysis is currently providing a new requirement. We are required to conclude an opinion or argument in a document such as the enormous social media data as quickly and efficiently. Opinion obtained from us may infer a hidden key information and can be used for further analysis. Topic models is model for corpus to finding topics hidden in it. One model that will be discussed is Latent Dirichlet Allocation (LDA) probability model. Latent Dirichlet Allocation (LDA) is a probability model of textual data which can explain the correlation between the words with a hidden semantic theme in the document. Estimation of the parameters used in the model is a Bayesian method. Bayesian method is a method that provides value estimates through the posterior distribution. For this model the estimated calculation of the posterior distribution is very complex, therefore Gibbs sampling estimation is then used. In this paper, Latent Dirichlet Allocation (LDA) probability model is applied for data that have their source from one of the social media platform, Twitter. The aim is to know what dominant news are talking about on Twitter in a given period. The outcome of this topic models is a main topic of the entire public opinions which is then interpreted to be the most dominant news people talk about. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , RUSKE ILLA KENGKEN and , Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc. (2014) PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=71845
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, RUSKE ILLA KENGKEN
, Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc.
PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION
description The rise of social media analysis is currently providing a new requirement. We are required to conclude an opinion or argument in a document such as the enormous social media data as quickly and efficiently. Opinion obtained from us may infer a hidden key information and can be used for further analysis. Topic models is model for corpus to finding topics hidden in it. One model that will be discussed is Latent Dirichlet Allocation (LDA) probability model. Latent Dirichlet Allocation (LDA) is a probability model of textual data which can explain the correlation between the words with a hidden semantic theme in the document. Estimation of the parameters used in the model is a Bayesian method. Bayesian method is a method that provides value estimates through the posterior distribution. For this model the estimated calculation of the posterior distribution is very complex, therefore Gibbs sampling estimation is then used. In this paper, Latent Dirichlet Allocation (LDA) probability model is applied for data that have their source from one of the social media platform, Twitter. The aim is to know what dominant news are talking about on Twitter in a given period. The outcome of this topic models is a main topic of the entire public opinions which is then interpreted to be the most dominant news people talk about.
format Theses and Dissertations
NonPeerReviewed
author , RUSKE ILLA KENGKEN
, Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc.
author_facet , RUSKE ILLA KENGKEN
, Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc.
author_sort , RUSKE ILLA KENGKEN
title PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION
title_short PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION
title_full PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION
title_fullStr PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION
title_full_unstemmed PEMODELAN TOPIK UNTUK MEDIA SOSIAL MENGGUNAKAN LATENT DIRICHLET ALLOCATION
title_sort pemodelan topik untuk media sosial menggunakan latent dirichlet allocation
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2014
url https://repository.ugm.ac.id/131387/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=71845
_version_ 1681233315742351360