ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE

Jackknife is one of the estimation methods, computer-based statistical inference. Its working principle is using a computer in generating original data from a small sample to get an pseudo sample. Pseudo sample is obtained by removing an observation from the original sample can then be used to calcu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: , HANA FITIANINGRUM, , Herni Utami, S.Si., M.Si.
التنسيق: Theses and Dissertations NonPeerReviewed
منشور في: [Yogyakarta] : Universitas Gadjah Mada 2013
الموضوعات:
ETD
الوصول للمادة أونلاين:https://repository.ugm.ac.id/124227/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64347
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universitas Gadjah Mada
id id-ugm-repo.124227
record_format dspace
spelling id-ugm-repo.1242272016-03-04T08:38:19Z https://repository.ugm.ac.id/124227/ ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE , HANA FITIANINGRUM , Herni Utami, S.Si., M.Si. ETD Jackknife is one of the estimation methods, computer-based statistical inference. Its working principle is using a computer in generating original data from a small sample to get an pseudo sample. Pseudo sample is obtained by removing an observation from the original sample can then be used to calculate the value of the estimator. One of the jackknife method�s advantage is no need of any assumptions regarding the distribution of the sample possessed. The main purpose of this method is to obtain the best possible estimate based on minimal data with the help of computers. A jackknife method can be used on paired data for purposes ratio and in the case regression models. In this paper, a jackknife method is applied to estimate the parameters of a logistic regression model. Logistic regression model is a form of regression analysis to determine a causal relationship (causality) when the response variable Y has only two possible values / results or data are dichotomous. The method which is often used to solve the logistic regression problem is Maximum Likelihood Estimation (MLE) where the parameter estimation process is preceded by the formation of likelihood function. Jackknife method in estimating parameters of the logistic regression model is illustrated in the determination of the level of bankruptcies in the Indonesian banking firm selected randomly. Based on the results of the analysis, jackknife method is able to reduce the standard errors to jackknife deleted-2. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , HANA FITIANINGRUM and , Herni Utami, S.Si., M.Si. (2013) ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64347
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, HANA FITIANINGRUM
, Herni Utami, S.Si., M.Si.
ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE
description Jackknife is one of the estimation methods, computer-based statistical inference. Its working principle is using a computer in generating original data from a small sample to get an pseudo sample. Pseudo sample is obtained by removing an observation from the original sample can then be used to calculate the value of the estimator. One of the jackknife method�s advantage is no need of any assumptions regarding the distribution of the sample possessed. The main purpose of this method is to obtain the best possible estimate based on minimal data with the help of computers. A jackknife method can be used on paired data for purposes ratio and in the case regression models. In this paper, a jackknife method is applied to estimate the parameters of a logistic regression model. Logistic regression model is a form of regression analysis to determine a causal relationship (causality) when the response variable Y has only two possible values / results or data are dichotomous. The method which is often used to solve the logistic regression problem is Maximum Likelihood Estimation (MLE) where the parameter estimation process is preceded by the formation of likelihood function. Jackknife method in estimating parameters of the logistic regression model is illustrated in the determination of the level of bankruptcies in the Indonesian banking firm selected randomly. Based on the results of the analysis, jackknife method is able to reduce the standard errors to jackknife deleted-2.
format Theses and Dissertations
NonPeerReviewed
author , HANA FITIANINGRUM
, Herni Utami, S.Si., M.Si.
author_facet , HANA FITIANINGRUM
, Herni Utami, S.Si., M.Si.
author_sort , HANA FITIANINGRUM
title ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE
title_short ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE
title_full ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE
title_fullStr ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE
title_full_unstemmed ESTIMASI PARAMETER MODEL REGRESI LOGISTIK MENGGUNAKAN METODE JACKKNIFE
title_sort estimasi parameter model regresi logistik menggunakan metode jackknife
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2013
url https://repository.ugm.ac.id/124227/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64347
_version_ 1681232039295057920