การเดินม้าแบบปิดบนกระดานหมากรุกขนาด 4xn ที่ถูกลบสองช่อง
This project determines all pairs of squares such that after being deleted from the chessboards of size 4x3, 4x4, 4x5, 4x6, 4x7 and 4x8, there exists a closed knight’s tour on each deleted chessboard. We also determine some pairs of squares such that after being deleted from the chessboards of size...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Senior Project |
اللغة: | Thai |
منشور في: |
จุฬาลงกรณ์มหาวิทยาลัย
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://digiverse.chula.ac.th/Info/item/dc:10643 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chulalongkorn University |
اللغة: | Thai |
الملخص: | This project determines all pairs of squares such that after being deleted from the chessboards of size 4x3, 4x4, 4x5, 4x6, 4x7 and 4x8, there exists a closed knight’s tour on each deleted chessboard. We also determine some pairs of squares such that after being deleted from the chessboards of size 4xn, where n ≥ 9, there exists a closed knight’s tour on each deleted chessboard. The result partially proves Bi et al.’s conjecture. |
---|