การเคลือบโคพอลิเมอร์ที่เป็นสวิทเทอร์ไอออนผ่านปฏิกิริยาคลิกเพื่อป้องกันการดูดซับอย่างไม่จำเพาะเจาะจงของสารชีวโมเลกุล

Fouling or non-specific adsorption of biomolecules and cells namely proteins, bacteria often lead to undesirable and detrimental effects. Healthcare-associated infections (HAIs) are widely acknowledged as the most frequent adverse event in hospitals. It has been estimated that 80% of the infections...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: อาริยา วิจิตรอมรเลิศ
مؤلفون آخرون: วรวีร์ โฮเว่น
التنسيق: Senior Project
اللغة:Thai
منشور في: จุฬาลงกรณ์มหาวิทยาลัย 2017
الموضوعات:
الوصول للمادة أونلاين:https://digiverse.chula.ac.th/Info/item/dc:10098
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Fouling or non-specific adsorption of biomolecules and cells namely proteins, bacteria often lead to undesirable and detrimental effects. Healthcare-associated infections (HAIs) are widely acknowledged as the most frequent adverse event in hospitals. It has been estimated that 80% of the infections acquired in hospitals involve biofilms generated from bacteria adhesion. One effective way to prevent biofilm formation is to coat biomedically relevant materials with highly hydrophilic polymer. In this study, zwitterionic copolymer of methacryloyloxyethyl phosphorylcholine (MPC) and a methacrylate-substituted dihydrolipoic acid (DHLA) (poly(MPC-DHLA)) was introduced for universal coating to prevent non-specific adsorption of biomolecules. It was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The MPC repeat units contributed biocompatibility and antifouling properties, whereas the DHLA repeat units enabled cross-linking via thiol-one click reaction. Poly(MPC-DHLA) were spin-coated on various biomedical relevant substrates, including silicon wafer (Si), titanium (Ti), stainless steel (SUS316L), polyethylene (PE), polyether ether ketone (PEEK), polydimethylsiloxane (PDMS) and poly(methyl methacrylate) (PMMA). Substrates coated with polymeric thin films were characterized by rhodamine 6G staining, water contact angle measurement, spectroscopic ellipsometry, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cell adhesion test on L929 mouse fibroblast cells was also tested to preliminarily confirm antifouling properties of coated poly(MPC-DHLA). It is our on-going investigation to evaluate the ability to prevent biofilm formation of selected poly(MPC-DHLA)-coated substrates.