Maximizing multifaceted network influence
An information dissemination campaign is often multifaceted, involving several facets or pieces of information disseminating from different sources. The question then arises, how should we assign such pieces to eligible sources so as to achieve the best viral dissemination results? Past research has...
Saved in:
Main Authors: | LI, Yuchen, FAN, Ju, OVCHINNIKOV, George V., KARRAS, Panagiotis |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2019
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/4414 https://ink.library.smu.edu.sg/context/sis_research/article/5417/viewcontent/mmni.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Influence maximization on social graphs: A survey
由: LI, Yuchen, et al.
出版: (2018) -
DeepIS: Susceptibility estimation on social networks
由: XIA, Wenwen, et al.
出版: (2021) -
Adaptive content-aware influence maximization via online learning to rank
由: THEOCHARIDIS, Konstantinos, et al.
出版: (2024) -
On the robustness of diffusion in a network under node attacks
由: LOGINS, Alvis, et al.
出版: (2022) -
Empirical risk landscape analysis for understanding deep neural networks
由: ZHOU, Pan, et al.
出版: (2018)