NEURAL FINE-GRAINED SENTIMENT ANALYSIS WITH UNSUPERVISED AND TRANSFER LEARNING APPROACHES
Ph.D
Saved in:
主要作者: | HE RUIDAN |
---|---|
其他作者: | COMPUTER SCIENCE |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://scholarbank.nus.edu.sg/handle/10635/166277 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | National University of Singapore |
語言: | English |
相似書籍
-
MiMuSA—mimicking human language understanding for fine-grained multi-class sentiment analysis
由: Wang, Zhaoxia, et al.
出版: (2024) -
Learning multi-grained aspect target sequence for Chinese sentiment analysis
由: Peng, Haiyun, et al.
出版: (2020) -
MiMuSA: Mimicking human language understanding for fine-grained multi-class sentiment analysis
由: WANG, Zhaoxia, et al.
出版: (2023) -
Fine-grained and controllably redactable blockchain with harmful data forced removal
由: HOU, Huiying, et al.
出版: (2021) -
Towards a Chinese common and common sense knowledge base for sentiment analysis
由: Cambria, E., et al.
出版: (2014)