Optimizing AR PAM image enhancement: learning & model based approaches with GANs & deep CNNs

Photoacoustic Imaging (PAI), an emerging biomedical imaging technology, holds significant promise for medical diagnosis and biological research. This study addresses the challenge of improving image quality in acoustic resolution photoacoustic imaging.Introducing acoustic resolution (AR) and optical...

全面介紹

Saved in:
書目詳細資料
主要作者: Liu, Chenyang
其他作者: Zheng Yuanjin
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/174177
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Photoacoustic Imaging (PAI), an emerging biomedical imaging technology, holds significant promise for medical diagnosis and biological research. This study addresses the challenge of improving image quality in acoustic resolution photoacoustic imaging.Introducing acoustic resolution (AR) and optical resolution ( OR images to train a deep learning network architecture MultiResU Net which is a Fully Connected U shaped Convolutional Network (U Net) that incorporates multiple residual blocks ) enhances the quality of AR PAM images. Subsequently, the Adversarial One Class Deep Transfer Learning Generative Adversarial Network AODTL GAN ) architecture is introduced to overcome domain shift issues, effectively improving perceptual image quality. Quantitative evaluation demonstrates the proposed algorithm's effectiveness, with peak signal to noise ratio (PSNR) increasing from 14.33 dB to 18.47 dB and the structural similarity index (SSIM) increasing from 0.1996 to 0.2975. Furthermore, a novel algorithm combining learning based and model based approaches is explored. Using the generated FFDNet structure as a plug and play (PnP) prior, different levels of additive white Gaussian noise (AWGN) are adaptively eliminated. In vivo experimental results show this method significantly improves image resolution while maintaining enhancement flexibility , opening new possibilities for developing photoacoustic imaging technology.