Ownership verification of DNN architectures via hardware cache side channels
Deep Neural Networks (DNN) are gaining higher commercial values in computer vision applications, e.g., image classification, video analytics, etc. This calls for urgent demands of the intellectual property (IP) protection of DNN models. In this paper, we present a novel watermarking scheme to achiev...
Saved in:
Main Authors: | Lou, Xiaoxuan, Guo, Shangwei, Li, Jiwei, Zhang, Tianwei |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/159773 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
A formal methodology for verifying side-channel vulnerabilities in cache architectures
由: Jiang, Ke, et al.
出版: (2023) -
Cache refinement type for side-channel detection of cryptographic software
由: Jiang, Ke, et al.
出版: (2023) -
On use of deep learning for side channel evaluation of black box hardware AES engine
由: Won, Yoo-Seung, et al.
出版: (2021) -
NASPY: automated extraction of automated machine learning models
由: Lou, Xiaoxuan, et al.
出版: (2023) -
DNN model theft through trojan side-channel on edge FPGA accelerator
由: Chandrasekar, Srivatsan, et al.
出版: (2024)