Decentralized edge intelligence : a dynamic resource allocation framework for hierarchical federated learning
To enable the large scale and efficient deployment of Artificial Intelligence (AI), the confluence of AI and Edge Computing has given rise to Edge Intelligence, which leverages on the computation and communication capabilities of end devices and edge servers to process data closer to where it is pro...
Saved in:
Main Authors: | Lim, Bryan Wei Yang, Ng, Jer Shyuan, Xiong, Zehui, Jin, Jiangming, Zhang, Yang, Niyato, Dusit, Leung, Cyril, Miao, Chunyan |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156035 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Dynamic edge association and resource allocation in self-organizing hierarchical federated learning networks
由: Lim, Bryan Wei Yang, et al.
出版: (2022) -
Federated learning in mobile edge networks : a comprehensive survey
由: Lim, Bryan Wei Yang, et al.
出版: (2020) -
Multi-agent deep reinforcement learning based incentive mechanism for multi-task federated edge learning
由: Zhao, Nan, et al.
出版: (2023) -
Federated machine learning for edge computing
由: Hong, Zhi Hao
出版: (2025) -
CrowdFL: a marketplace for crowdsourced federated learning
由: Feng, Daifei, et al.
出版: (2022)