A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings
Building air-conditioning and mechanical ventilation (ACMV) systems are responsible for significant energy consumption and yet, dissatisfaction with the thermal environment is prevalent among the occupants, revealing a widespread disparity between energy-efficiency and indoor thermal-comfort in buil...
محفوظ في:
المؤلفون الرئيسيون: | Chaudhuri, Tanaya, Soh, Yeng Chai, Li, Hua, Xie, Lihua |
---|---|
مؤلفون آخرون: | Interdisciplinary Graduate School (IGS) |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/151121 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Machine Learning based Prediction of Thermal Comfort in Buildings of Equatorial Singapore
بواسطة: Chaudhuri, Tanaya, وآخرون
منشور في: (2017) -
Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology
بواسطة: Zhai, Deqing, وآخرون
منشور في: (2018) -
Thermal comfort prediction using normalized skin temperature in a uniform built environment
بواسطة: Chaudhuri, Tanaya, وآخرون
منشور في: (2018) -
Energy efficiency improvement with k-means approach to thermal comfort for ACMV systems of smart buildings
بواسطة: Zhai, Deqing, وآخرون
منشور في: (2018) -
A COMPARATIVE STUDY OF INDOOR AIR QUALITY AND THERMAL COMFORT IN THE NEW AND OLD CANTEENS IN NUS
بواسطة: REENA LEUNG ZI YING
منشور في: (2021)