Tensor decomposition for spatial-temporal traffic flow prediction with sparse data
Urban transport traffic surveillance is of great importance for public traffic control and personal travel path planning. Effective and efficient traffic flow prediction is helpful to optimize these real applications. The main challenge of traffic flow prediction is the data sparsity problem, meanin...
Saved in:
Main Authors: | Yang, Funing, Liu, Guoliang, Huang, Liping, Chin, Cheng Siong |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/145688 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Recommender systems based on tensor decomposition
由: Sun, Zhoubao, et al.
出版: (2022) -
Weyl's construction and tensor power decomposition for g2
由: Huang, J.-S., et al.
出版: (2014) -
Handling missing data in medical questionnaires using tensor decompositions
由: Dauwels, J., et al.
出版: (2014) -
A fast correction approach to tensor robust principal component analysis
由: Zhang, Zhechen, et al.
出版: (2024) -
On the compression of translation operator tensors in FMM-FFT-accelerated SIE simulators via tensor decompositions
由: Qian, Cheng, et al.
出版: (2022)