Investigation of a nickel aluminium bronze alloy fabricated by directed energy deposition additive manufacturing

Nickel aluminium bronze (NAB) is a common material used in marine and offshore applications. The potential of the material to achieve high strength and high corrosion resistance make it an attractive material to use in seawater conditions. However, there are many disadvantages to conventional manufa...

全面介紹

Saved in:
書目詳細資料
主要作者: Chiam, Jay-Sen
其他作者: Zhou Kun
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/141404
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Nickel aluminium bronze (NAB) is a common material used in marine and offshore applications. The potential of the material to achieve high strength and high corrosion resistance make it an attractive material to use in seawater conditions. However, there are many disadvantages to conventional manufacturing methods for NAB. This includes long lead time and unfavourable microstructure due to the slow cooling rate. Additive manufacturing is able to manufacture complex structures additionally, AM is able to overcome these disadvantages with quicker production time as well as altering the microstructure to suit the application. In this paper, directed energy deposition (DED) of Cu-9Al-5Ni-5Fe NAB powder was used to produce single track specimens, and the effects of laser power and printing speed on the properties of the specimens were studied. A process parameter window was established based on the properties of the specimens, and mathematical models were derived to predict the printed geometry. The parameters were optimised to achieve the best print quality that is free of defects. DED-built single tracks displayed superior hardness compared to cast NAB. This work proves that DED is a potential manufacturing method to fabricate NAB components with superior performance to that of conventional manufacturing methods.