Generating an SVM Kernel function using genetic algorithm
SVMs' performance is affected greatly by the choice of kernel function and kernel parameters. This study made use of a complete binary tree of depth 3 and the Genetic Algorithm to automate the non-trivial task of finding a kernel function that best classi
Saved in:
主要作者: | IMMER, BALDOS |
---|---|
格式: | text |
出版: |
Archīum Ateneo
2012
|
主題: | |
在線閱讀: | https://archium.ateneo.edu/theses-dissertations/192 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Ateneo De Manila University |
相似書籍
-
Discriminant analysis in pairwise kernel learning for SVM classification
由: Jiang, H., et al.
出版: (2014) -
SVM compound kernel functions for vehicle target classification
由: Roxas, Edison A., et al.
出版: (2018) -
Text classification with kernels on the multinomial manifold
由: Zhang, D., et al.
出版: (2014) -
Kernel methods for the incorporation of prior-knowledge into support vector machines
由: VEILLARD ANTOINE PAUL MITSUMASA
出版: (2013) -
Question Classification using Support Vector Machines
由: Zhang, D., et al.
出版: (2013)