REGRESI NONPARAMETRIK KERNEL ADJUSTED

Nadaraya watson�s kernel adjusted regression estimator is an estimator that whose kernel is taken from the family of scale-location associated with the classical kernel density estimator. Based on these estimator, it can be obtained optimal bandwith and scale parameter. This estimator gives a bett...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: , NOVITA EKA CHANDRA, , Prof. Dr. Sri Haryatmi, M.Sc.
التنسيق: Theses and Dissertations NonPeerReviewed
منشور في: [Yogyakarta] : Universitas Gadjah Mada 2014
الموضوعات:
ETD
الوصول للمادة أونلاين:https://repository.ugm.ac.id/133812/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74649
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Nadaraya watsonâ��s kernel adjusted regression estimator is an estimator that whose kernel is taken from the family of scale-location associated with the classical kernel density estimator. Based on these estimator, it can be obtained optimal bandwith and scale parameter. This estimator gives a better estimation results compared with Naradaya Watsonâ��s clasical kernel regression estimator. This is proven by the small grade MSE which is given by this estimator.