PENDEKATAN KERNEL UNTUK SEBARAN TEMPERATUR DAN BAHAN PADA PERMUKAAN BOLA DUA DIMENSI

Temperature distribution on two dimensional sphere has been gained from diffution formulation using heat kernel estimation. The compactly sphere made the Ricci curved scalar became non-negative. As a concequence, the kernel satisfied LiYau estimation. Then, the obtained kernel equation was used to c...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: , rizki ilmianih, , Dr.rer.nat. M. Farchani Rosyid.
التنسيق: Theses and Dissertations NonPeerReviewed
منشور في: [Yogyakarta] : Universitas Gadjah Mada 2014
الموضوعات:
ETD
الوصول للمادة أونلاين:https://repository.ugm.ac.id/133793/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74618
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universitas Gadjah Mada
الوصف
الملخص:Temperature distribution on two dimensional sphere has been gained from diffution formulation using heat kernel estimation. The compactly sphere made the Ricci curved scalar became non-negative. As a concequence, the kernel satisfied LiYau estimation. Then, the obtained kernel equation was used to calculate the temperature and substance distribution by using three kind of sources: (1) the instantenious pointlike source, (2) periodically instaneous pointlike source, (3) the time dependet pointlike source. Heat distribution and diffusion which were plotted by using software of Mathematica showed there were differences of final temperature of that cases.