ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
In many application, such as epidemiologic and biomedical studies, logistic regression is the standard approach for the analysis of binary and ordered categorical data. Common frequentist approaches, which can be used for data of this type, via generalized estimating equation (GEE, Zeger and Liang,...
Saved in:
Main Authors: | , |
---|---|
格式: | Theses and Dissertations NonPeerReviewed |
出版: |
[Yogyakarta] : Universitas Gadjah Mada
2013
|
主題: | |
在線閱讀: | https://repository.ugm.ac.id/124203/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64323 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Universitas Gadjah Mada |
id |
id-ugm-repo.124203 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.1242032016-03-04T08:24:03Z https://repository.ugm.ac.id/124203/ ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS , ARIF MARJUKI , Herni Utami, S.Si, M.Si. ETD In many application, such as epidemiologic and biomedical studies, logistic regression is the standard approach for the analysis of binary and ordered categorical data. Common frequentist approaches, which can be used for data of this type, via generalized estimating equation (GEE, Zeger and Liang, 1986). Although the GEE approach solve this problem, the justification relies on large sample arguments. In this paper we follow a Bayesian approach to estimaste and inference, for multivariate binary and categorical data. Bayesian approach often produce a high complexity calculation and high dimensions integral. By using Markov chain Monte Carlo (MCMC) algorithms to obtain estimates of exact posterior distributions, there is no need to rely on large sample justifications. It�s also fast and eficien in calculation. Bayesian methods involves the prior information of the parameters to estimate the posterior distribution. This article is motivated by the need to develop Bayesian methods for multivariate logistic regression, which allow simple noninformative prior distribution. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , ARIF MARJUKI and , Herni Utami, S.Si, M.Si. (2013) ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64323 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
country |
Indonesia |
collection |
Repository Civitas UGM |
topic |
ETD |
spellingShingle |
ETD , ARIF MARJUKI , Herni Utami, S.Si, M.Si. ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS |
description |
In many application, such as epidemiologic and biomedical studies,
logistic regression is the standard approach for the analysis of binary and
ordered categorical data. Common frequentist approaches, which can be used for
data of this type, via generalized estimating equation (GEE, Zeger and Liang,
1986). Although the GEE approach solve this problem, the justification relies on
large sample arguments. In this paper we follow a Bayesian approach to
estimaste and inference, for multivariate binary and categorical data. Bayesian
approach often produce a high complexity calculation and high dimensions
integral.
By using Markov chain Monte Carlo (MCMC) algorithms to obtain
estimates of exact posterior distributions, there is no need to rely on large sample
justifications. It�s also fast and eficien in calculation. Bayesian methods involves
the prior information of the parameters to estimate the posterior distribution. This
article is motivated by the need to develop Bayesian methods for multivariate
logistic regression, which allow simple noninformative prior distribution. |
format |
Theses and Dissertations NonPeerReviewed |
author |
, ARIF MARJUKI , Herni Utami, S.Si, M.Si. |
author_facet |
, ARIF MARJUKI , Herni Utami, S.Si, M.Si. |
author_sort |
, ARIF MARJUKI |
title |
ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS |
title_short |
ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS |
title_full |
ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS |
title_fullStr |
ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS |
title_full_unstemmed |
ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS |
title_sort |
analisis bayesian pada regresi logistik multivariat dengan algoritma mcmc random walk metropolis |
publisher |
[Yogyakarta] : Universitas Gadjah Mada |
publishDate |
2013 |
url |
https://repository.ugm.ac.id/124203/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64323 |
_version_ |
1681232034666643456 |