ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS

In many application, such as epidemiologic and biomedical studies, logistic regression is the standard approach for the analysis of binary and ordered categorical data. Common frequentist approaches, which can be used for data of this type, via generalized estimating equation (GEE, Zeger and Liang,...

Full description

Saved in:
Bibliographic Details
Main Authors: , ARIF MARJUKI, , Herni Utami, S.Si, M.Si.
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/124203/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64323
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.124203
record_format dspace
spelling id-ugm-repo.1242032016-03-04T08:24:03Z https://repository.ugm.ac.id/124203/ ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS , ARIF MARJUKI , Herni Utami, S.Si, M.Si. ETD In many application, such as epidemiologic and biomedical studies, logistic regression is the standard approach for the analysis of binary and ordered categorical data. Common frequentist approaches, which can be used for data of this type, via generalized estimating equation (GEE, Zeger and Liang, 1986). Although the GEE approach solve this problem, the justification relies on large sample arguments. In this paper we follow a Bayesian approach to estimaste and inference, for multivariate binary and categorical data. Bayesian approach often produce a high complexity calculation and high dimensions integral. By using Markov chain Monte Carlo (MCMC) algorithms to obtain estimates of exact posterior distributions, there is no need to rely on large sample justifications. It�s also fast and eficien in calculation. Bayesian methods involves the prior information of the parameters to estimate the posterior distribution. This article is motivated by the need to develop Bayesian methods for multivariate logistic regression, which allow simple noninformative prior distribution. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , ARIF MARJUKI and , Herni Utami, S.Si, M.Si. (2013) ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64323
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, ARIF MARJUKI
, Herni Utami, S.Si, M.Si.
ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
description In many application, such as epidemiologic and biomedical studies, logistic regression is the standard approach for the analysis of binary and ordered categorical data. Common frequentist approaches, which can be used for data of this type, via generalized estimating equation (GEE, Zeger and Liang, 1986). Although the GEE approach solve this problem, the justification relies on large sample arguments. In this paper we follow a Bayesian approach to estimaste and inference, for multivariate binary and categorical data. Bayesian approach often produce a high complexity calculation and high dimensions integral. By using Markov chain Monte Carlo (MCMC) algorithms to obtain estimates of exact posterior distributions, there is no need to rely on large sample justifications. It�s also fast and eficien in calculation. Bayesian methods involves the prior information of the parameters to estimate the posterior distribution. This article is motivated by the need to develop Bayesian methods for multivariate logistic regression, which allow simple noninformative prior distribution.
format Theses and Dissertations
NonPeerReviewed
author , ARIF MARJUKI
, Herni Utami, S.Si, M.Si.
author_facet , ARIF MARJUKI
, Herni Utami, S.Si, M.Si.
author_sort , ARIF MARJUKI
title ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
title_short ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
title_full ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
title_fullStr ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
title_full_unstemmed ANALISIS BAYESIAN PADA REGRESI LOGISTIK MULTIVARIAT DENGAN ALGORITMA MCMC RANDOM WALK METROPOLIS
title_sort analisis bayesian pada regresi logistik multivariat dengan algoritma mcmc random walk metropolis
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2013
url https://repository.ugm.ac.id/124203/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=64323
_version_ 1681232034666643456